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We extend a preceding application of the GvdW theory to the prediction of 
interface profiles and surface tension in simple fluids by incorporating a varia- 
tional determination of the effective hard-sphere diameter. This has previously 
been found to improve the predicted equation of state. Here we find that it also 
improves the prediction of interface profiles and surface tension in LJ(12-6) 
fluids. The agreement with experiment and simulation when these quantities are 
considered as functions of T / T  c is to Within about 5%. As in our earlier 
calculations the nonlocal entropic effects are found to reduce the surface tension 
by 5%-10%. In the present conceptually more accurate theory this significantly 
improves the agreement with experiment and simulation. 

KEY WORDS: Simple fluids; interface profile; surface tension; nonlocal 
entropy; variational hard-sphere diameter. 

1. INTRODUCTION 

In a preceding article C1) in this series devoted to the development and 
testing of the generalized van der Waals (GvdW) theory we have examined 
the accuracy with which a gas/liquid interface in a simple fluid could be 
resolved. This first article focused on the simplest approximations available 
including calculations for step-function profiles and the use of a moment 
expansion method which reduces the theory to a form similar to that of van 
der Waals C2> and Cahn and Hilliard. C3) We also calculated the interface 
profile and surface tension using an assumed tanh functional form for the 
profile and four of the simplest GvdW free energy functionals. Two of 
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these functionals corresponded to a coarse-grained (CG) theory wherein the 
entropy is a local functional while the other two were fine-grained (FG) in 
the sense that the entropy was nonlocal in recognition of the finite range of 
the excluded volume effects. The results of these calculations showed that a 
step-function profile leads to an overestimate of the surface tension by 
about 50% at the triple point, the moment expansion (or density gradient) 
method leads to an overestimation of about 20%, and the simple G v d W  
functionals without the above-mentioned simplifications underestimate the 
experimental values by about 10%. These comparisons assume that we use 
T~ T c rather than T as the independent variable. Otherwise the errors in the 
predicted critical temperatures would cause widely varying and generally 
larger deviations between theory and experiment. It was found that nonlo- 
cal entropic effects tend to decrease the surface tension (and the width of 
the profile) by about 10%. The profile widths agree reasonably well with the 
simulation results of Chapela et al. (4) 

The work summarized above has demonstrated the applicability of the 
GvdW theory and its satisfactory accuracy relative to its mathematical and 
physical simplicity. Its success may be difficult to understand by compari- 
son with the recently dominant theories of dense fluids which emphasize 
correlation effectsJ 5-7) The problems and progress made in applying pair 
correlation function methods to the liquid/gas interface have recently been 
reviewed by Croxton, ~s) Abraham, ~9) and Evans. ~1~ Our own work is more 
closely related to the constant chemical potential method originally devel- 
oped by Hill r and later extended by Plesner and Platz, ~ 12) Lentz et al., r 
and Widom314) The results of our initial calculations summarized above 
show that correlation effects beyond simple excluded volume effects are 
only of minor importance in determining interface profiles and surface 
tension in a simple liquid. This conclusion is significant not only for its 
theoretical implications but perhaps more so for its promise of putting a 
more complete qualitative and quantitative understanding of interfacial 
phenomena within reach of nonspecialists. 

The aim of the present work is to show that the accuracy of the GvdW 
calculations can be improved by use of more sophisticated free-energy 
functionals than those used in the preceding calculations summarized 
above. Thus we are here using the variational hard-sphere form of the 
theory referred to as GvdW(VHS-I) in two preceding articles~15'16) where it 
was applied to uniform simple fluids in three dimensions and two dimen- 
sions, respectively. Apart from the conceptually satisfying feature that the 
division of the potential into hard and soft parts is now done in such a way 
as to minimize the overall free energy (see Kozak and Rice, ~17~ Mansoori 
and Canfield, ~s) and Rasaiah and Stell ~19) for similar ideas applied to 
reference fluid perturbation theory) there is the practical advantage that the 
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equation of state of simple fluids, and, in particular, the critical parameters 
are now more accurately reproduced. This will automatically improve the 
resolution of interface phenomena which are, of course, directly related to 
the phase separation and the critical parameters. Plotted against T / T  C the 
results already obtained were quite good but there were some anomalies, 
e.g., the fact that the coarse-grained theory was more accurate than the 
fine-grained theory and the underestimation of the surface tension in a 
variational calculation where, owing to a limitation on the shape of the 
interface profile, one would have expected an overestimation. These 
anomalies do not seriously affect the utility of the simplest methods 
previously explored. Nevertheless, it is reassuring to know that they can be 
largely eliminated by a straightforward and simple extension of the theory. 

The basic theory and its numerical implementation in the present 
application are summarized in the following section. We then present and 
discuss the results for interface width and surface tension in Section 3. The 
last section contains some conclusions that we draw from the present work 
and a comparison with alternative theories. 

2. GvdW(VHS-I) THEORY AND IMPLEMENTATION FOR THE 
LIQUID/GAS INTERFACE 

The basic derivation of the GvdW theory has been described in the 
first article in this series (2~ and its extension to the VHS-I form to be used 
below is contained in the third (2~) and fourth article. We shall not repeat 
the basic arguments here but merely summarize the features of the theory 
which are essential for the understanding of the calculations reported 
below. The GvdW theory is a variational theory based on a free-energy 
density functional reflecting the contribution to the partition function of a 
subset of configurations defined by an r-space particle density which is 
coarse-grained to some degree. Although the most important simplification 
is due to a neglect of correlations in evaluating binding energies it is worth 
emphasizing that the theory is not a mean field theory in the traditional 
sense. The GvdW theory is a theory of fluctuations. The basic idea is to 
choose a dominant subensemble of configurations and work out the contri- 
bution to the free energy made by this subensemble. The correlations 
neglected are those of the subensemble, which often differ considerably 
from those of the full equilibrium ensemble. The success of the theory is 
dependent upon the construction of simple yet accurate free-energy func- 
tionals for the class of model or real systems that are to be studied. The 
numerical implementation in a given application then generally involves 
finding an approximate solution, i.e., an optimal particle density which 
minimizes the free energy, of the variational principle. Since the functional 
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is an estimate of the total (or configurational) free energy the thermody- 
namic properties are then easily obtained. 

The two free-energy functionals that we shall use here are 
CG--GvdW(VHS-I) :  

= - krf dr ~(r){ - l n ~ ( r )  + (2~r/3)ln[ 1 - ~(n(r))  d3~(r)] } 

+ 1 f dry dr' ~(r)~(r')q~s(r - r' ) (1) 

FG--GvdW(VHS-I) :  

~ = - k T f  d r ~ ( r ) ( - l n ~ ( r )  + (2~r/3)ln[ 1 - d3~(r)] } 

+ f drf dr' - r ' )  ( 2 )  

where ~(r) is in (2) to be obtained from ~(r) by the relation 

n(r) = (4~rd3/3)-I fl,_,~ I < adr ' a(r') (3) 

Here k is the Boltzmann constant and T the temperature as usual and all 
integrals are over the entire volume containing the fluid unless otherwise 
specified. The subscript c in oyc indicates that we are here only estimating 
the configurational contribution to the free energy. The velocity part is, of 
course, trivial in the case of classical systems and the canonical ensemble 
(at the usual level of approximation). We have assumed here that the 
system consists of a set of identical point particles interacting via a pair 
potential ~(r) which is spherically symmetric. In fact, we shall take q~(r) to 
be the usual Lennard-Jones (L J) potential. In obtaining the functionals 
above we have divided q~(r) into a hard and soft part, 

,h(rl=4e[(o/rll2--(o/r)6],  r < d  

= 0 ,  r > d (4) 

O~(r) = O, r < d 

=4c[(o/r) '2-(o/r)6],  r >i d (5) 

It has been assumed that q,h(r) acts like a hard-sphere potential excluding 
interparticle distances less than d. Thus the first terms on the right in (1) 
and (2) are estimates of - TS, where S is the entropy, and the factor 

Xf(~(r)) = [ 1 - d3~(r)]2~r/3 (6) 
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is the free volume fraction at r. The second term in ~ c is the estimate for 
the total potential energy E. 

The difference between the coarse-grained (CG) functional in (1) and 
the fine-grained (FG) functional in (2) lies in the fact that entropy in (1) is 
effectively a local quantity [since only the coarse-grained particle density 
~(r) appears] while in (2) the entropy is recognized to be a nonlocal 
quantity due to the finite but nonzero range of the excluded volume effects. 
Further discussion of this important point is contained in a preceding 
article. ~2o It should be noted that while the nonlocal excluded volume 
effect is reasonably estimated by the functional in (2) it is to be regarded as 
a lowest-level approximation, and room for further development exists. 

Finally we note that the important parameter d, the effective hard- 
sphere diameter in the VHS form of GvdW theory that we are using here, is 
treated as another independent variable to be determined by minimizing 
the free energy. This feature plays an important role in the present work 
and is responsible for the improvements achieved here by comparison with 
our preceding interface calculations. ~l) In the case of a uniform LJ(12-6) 
fluid the GvdW(VHS-I) theory produces reduced critical parameters Pc 
= 0.132, Pc = 0.309, k T  c = 1.18 in reduced units while the corresponding 
experimental values for argon are Pc = 0.116, Pc = 0.316, k T  c = 1.26. This is 
good agreement for most practical purposes and it is a considerable 
improvement over the simpler GvdW functionals lacking the variational 
hard-sphere feature. In the present application d is also a spatially varying 
quantity and it is of considerable interest to see how d will vary across the 
gas/liquid interface. 

The implementation of the GvdW(VHS-I) theory described above 
follows the pattern established earlier in our calculations using further 
simplifying approximations. ~l) The main point to note is that although a 
computer is needed the programming is straightforward and the calcula- 
tions comparatively cheap. The general strategy we have used is as follows. 
We have restricted our search for the optimal profile by assuming that it 
can be described by a tanh form, 

n ( x )  = n g  + (n, - rig)~(1 + e '~x) (7) 

where n ( x )  is ~(x) in the coarse-grained and tT(x) in the fine-grained 
theory. This should lead to an overestimation of the surface tension 
(possibly confused by other sources of error) but there is good evidence, 
e.g., from the simulation work of Chapela et al., (4) that the error introduced 
this way is small. Note that the interface in (7) is planar and therefore does 
not allow for effects of out-of-plane surface modes (riplons). The optimal a 
value is obtained by minimizing the surface tension using a numerical 
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parabolic search. Given that one chooses reasonable initial a values, only 
about 10 or fewer a values need be sampled to produce three significant 
figures accuracy, e.g., in the surface tension. 

The evaluation of the surface tension "t uses a direct subtraction, 

"~ fh._ h dx [ n(x) f~(x)  ] - ~176 Y (8) 

where the first term is the free energy of a slice of the fluid containing the 
interface and oy(0)(h) is the free energy of the corresponding slice of a fluid 
without surface tension, i.e., the range of entropic and energetic interactions 
vanish and the profile is a step function. The free energy per particle at 
x, f~(x), is obtained by first rewriting the functionals in (I) and (2) in 
one-dimensional form and then identifying f~(x) as 

fc(X) = k T  {ln~(x) - (2~r/3)ln[ 1 - d3(x)~(x) ]) 

1 f dx,~(x,)eo,,( x _ x'), (CG) (9) + 

f ,(x) = k T ( ln~(x)  - (2~r/3)ln[ 1 - d3(x)~(x) ] ) 

1 f - x'), (FG) (lO) 

where 

~(x) 3 4d 3 X+adx' x) 2] ( l l )  = ( /  

and the effective one-dimensional potential 0,1(x) is given by 

0 , . ( x ) = 4 ~ r , o 2 [ l ( ~ ) m - l ( ~  I, [ x l > d  

O )10 a 4 = 4 7 r , a 2 [ l ( ~ _  _ I ( ~ ) ] ,  ixl<<d (12) 

In the coarse-grained theory ~(x) is taken to have the form (7) while in the 
fine-grained theory 5(x) has this form and ~(x) is obtained from (I I). The 
zero-range free energy can be obtained from 

~176 = 2h[yntf~(n,)  + (1 -y)ngfc(ns) ] (13) 

y = [ ( A N / 2 h )  - ng]/(n,  - %) (14) 

AN = fh__haxn(x ) (151 

where fc(n) is the free energy per particle in a uniform fluid at density n 
and n t, ng are the bulk liquid and gas densities, respectively. 
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We have proceeded by evaluating f~(x) at typically about 30 lattice 
points in a lattice which concentrates most of its points close to the 
midpoint of the interface where the change is most rapid. At the same time 
h is adjusted to reflect the width of the interface (h "~" const/a). A specific 
suggestion for such a lattice was made in our preceding article. ( ]~ However, 
we have, in fact, used two different numerical integration schemes both 
giving very nearly the same results, so there are clearly many ways in which 
the implementation can be carried out. In one of our schemes n(x) is 
approximated by a piecewise polynomial (cubic) fit whereafter the integrals 
in (9)-(11) can be carried out analytically. For every x value in the lattice a 
d(x) value is obtained by a parabolic search for the minimum of f~(x) and, 
finally, the integration over f~(x) in (8) was carried out by a higher-order 
numerical integration method. 

The implementation is comparatively straightforward and free of ill- 
conditioned numerical problems. Two points may be worthy of mention. 
The integrations to obtain f~(x) must be carried outside the active interval 
[-h,h]. For x < - h  we have set n(x )=n  t and for x > h we have set 
n (x) =ng. Also note that when T approaches Tc from below y becomes a 
very small difference between two much larger numbers in (8). This does, 
of course, cause a growth in the error but we have found it possible to 
approach to within 5% of T~ while still retaining several significant figure 
accuracy for y. At the lowest temperature shown the narrow interface and 
correspondingly narrow active region ( [ - 1 5 / a ,  15/ct] in reduced units) 
cause an underestimate of "/ by about 1% and an overestimate of a by 
about 10% due to truncation of energy integrals. However, these errors 
diminish rapidly as T increases. 

3. R E S U L T S  A N D  D I S C U S S I O N  

The interface profile [~(x) in the case of the coarse-grained theory and 
~(x) in the fine-grained theory], the free energy per particle fc(x) and the 
effective hard-sphere diameter d(x) at T*= 0.7 in reduced units (T* 
= kT/E) are shown in Figs. 1 and 2 for the coarse- and fine-grained forms 
of the GvdW(VHS-I) theory, respectively. Note that this temperature is 
roughly equivalent to the triple point temperature for argon. We can see 
that the width of the interface is of the order of 20 or twice the hard-sphere 
diameter. The surface tension is associated with a peak in fc(x) at the 
interface due mainly to the loss in binding energy of the outermost liquid 
layer at the interface. The effective hard-sphere diameter changes smoothly 
from the lower liquid to the higher vapor value. However, in the case of the 
coarse-grained theory d(x) shows a maximum slightly to the gas side of the 
interface. This is presumably due to the fact that the attractive energy is 



.-6 

RCx) 

-.2 

-3./., 

--2"2 

-2.5 

.-2-8 

.fc(X) 

-3.1 

l i 

C~- 

if(x) 

--8 

d (x) 981 

.97, 

d(x) 

'96 

.95' 

J 
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nonlocal and higher than bulk attractive energies at this local density due 
to the proximity of denser liquid but the entropy is still evaluated as a local 
function. Thus the balance between energetic factors driving d(x) towards 
o and entropic factors driving d(x) towards lower values is now shifted in 
favor of the energetic effects causing d(x) to lie above the local "bulk" 
value. In the fine-grained theory this maximum in d(x) has disappeared 
and d(x) is monotone and roughly of the same shape (although with 
direction reversed) as the interface profile. 

On the whole the fine-grained theory produces smoother profiles for 
f~(x) and d(x). This is reasonable since this is the more accurate theory 
conceptually. In particular, it is more consistent in that nonlocality is 
allowed for in evaluating both entropy and energy. The fine-grained theory 
predicts a somewhat narrower interface. It should, however, be remem- 
bered that the two theories are used to predict different quantities. If we 
were to plot ~(x) as predicted by the fine-grained theory this function 
would show a broader profile more directly comparable with the ~(x) 
prediction obtained from the coarse-grained theory. The fine-grained pre- 
diction for fc(x) is slightly lower than the corresponding coarse-grained 
prediction. Thus the fine-grained surface tension is lower. This is a reflec- 
tion of the fact that the nonlocality of the excluded volume effects tends to 
increase the entropy and thus lower the surface tension. 

The results for the interface profile and the surface tension 3' are 
collected in Table I. Note that we shall use the measure of width w 

Table I. Interface Profiles and Surface Tension as Predicted by 
the Coarse-Grained (CG) and Fine-Grained (FG) Forms of 

the GvdW(VHS-I) Theory a 

Profile a Width  w Surface tension "y 

T* CG F G  CG F G CG FG 

0.50 2.522 3.385 1.586 i.182 !.559 1.409 
0.60 2.076 2.516 1.927 1.590 1.262 1.152 
0.70 1.707 1.978 2.343 2.022 0.978 0.900 
0.80 1.386 1.561 2.886 2.563 0.710 0.657 
0.90 1.093 1.208 3.660 3.311 0.464 0.432 
1.00 0.809 0.880 4.94 4.55 0.247 0.232 
1.10 0.498 0.534 8.03 7.49 0.0768 0.0723 
1.12 0.424 0.454 9.43 8.81 0.0507 0.0477 
1.14 0.341 0.364 11.73 10.99 0.0282 0.0266 
1.15 0.294 0.312 13.60 12.82 0.0187 0.0176 
1.16 0.239 0.254 16.74 15.75 0,0105 0.0099 
1.17 0.171 0.181 23.4 22.1 0.0040 0.0038 
1.18 0.054 0.057 74 70 0.000134 0.000127 

aReduced units are used such that o = 1, E --- 1, T* = kT/e. Note that T~* = 1.181 in both 
theories. 
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Table II. Bu lk  Properties of a LJ(12-6)  F lu id According to the 
GvdW(VHS-I )  Theo ry  (c = a = !, T*  = kT/c) 

P n t ng d l dg 

0.50 2.239E-4 0 .9858 4.497E-4 0.9386 0.9824 
0.60 1.441E-3 0 .9298 2.445E-3 0.9397 0.9794 
0.70 5.332E-3 0.8691 7.997E-3 0.9410 0.9766 
0.80 1.413E-2 0.8024 1.955E-2 0.9425 0.9737 
0.90 3.018E-2 0.7270 4.022E-2 0.9442 0.9707 
1 . 0 0  5.568E-2 0 .6382 7.524E-2 0.9464 0.9674 
1 . 1 0  9.255E-2 0.5227 0.1381 0.9495 0.9634 
1 . 1 5  1.158E-1 0.4378 0.1971 0.9519 0.9605 

i 

proposed by Chapela et al., (4) who used the same functional form, 

w = 4 / a  (16) 

The corresponding bulk values for the density n and the effective hard- 
sphere diameter d are contained in Table II. The reduced surface tension is 
compared to experimental results for Ar (22) and simulation results by 
Chapela et al. (4) We have plotted ~,* against T / T  C in order to eliminate the 
deviations which would be directly related to the variation in critical 
temperatures. Note that in reduced units T* is 1.26 for Ar while the 
GvdW(VHS-I) theory yields 1.18 and the simulations about 1.32 (see, e.g., 
Refs. 5 and 6). Figure 3 shows that the coarse-grained theory produces 3' 
values which are about 15% higher than the experimental values for argon 
for temperatures close to the triple point but cross over at about T/Tc~0 .9  
to lie below experiment close to T c. This decrease in surface tension is due 
to the nonlocal entropic effects and it brings the predicted surface tension 
into significantly better agreement with experiment. Around the triple point 
we overestimate the experimental value by about 7% but this percentage 
drops as we approach T c and the curves cross at about T/Tc~0.8 .  The 
simulation results (both Monte Carlo and molecular dynamics calculations 
were carried out by Chapela et al. (4)) show some scatter but the apparently 
most accurate results are in close agreement with experiment. It would 
seem therefore that our fine-grained calculations produce surface tensions 
in good agreement with both experiment and simulation. 

In the ease of the width of the profile we are able to compare only with 
simulation. Figure 4 shows that there is now considerable scatter in the 
simulation results. (4) Moreover, the best simulation calculations cover only 
a rather limited range of temperatures well away from the critical point. 
Nevertheless, it is clear from the figure that the fine-grained theory is in 
better agreement with simulation than is the coarse-grained theory. In fact, 
the fine-grained theory is a reasonably smooth line fit to all the simulation 
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Fig. 3. The reduced surface tension as compared to experimental values for Ar (22) and 
simulation results of Chapela et al. (4) Notation: Lines are drawn to reproduce results obtained 
here using the coarse-grained (CG) and fine-grained (FG) GvdW(VHS-I) theory. The experi- 
mental results are shown as filled triangles. The simulation results are shown as open triangles 
(MC255), open squares (MD255), and open circles (MDI020). 

data at low temperatures. Although this comparison is far from definitive 
we conclude that our fine-grained GvdW(VHS-I) theory yields interface 
widths of quite reasonable accuracy. 

We were, of course, able to obtain surface tensions and interface 
profile widths to reasonable accuracy already using the simple coarse- 
grained GvdW theory (]) wherein the effective hard-sphere diameter is not 
optimized but set equal to o and the excluded volume is density indepen- 
dent and equal to 0 3. The present theory is, however, a distinct improve- 
ment in several important respects. The first point is that the critical 
parameters are predicted to much better accuracy in the present theory. 
This alone would mean that the present results when plotted against T 
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The reduced width of the profile plotted against simulation results of Chapela et al. (4) 
Notat ion as in Fig. 3. 

rather than T / T  c would look much better than those previously obtained 
by the simple GvdW theory. Secondly the deviations observed here are 
smaller and healthier in the sense that they can, at least partially, be related 
to the fact that we have used a constrained functional form for our 
interface. It is quite likely that more flexibility in the choice of interface 
profile would lower the surface tension to produce even better agreement 
with experiment in the case of the GvdW(VHS-I) theory. In the case of the 
previous calculations the results would move marginally the wrong way. It 
is also very important conceptually that we have now verified that the 
supposedly most accurate form of the GvdW theory, i.e., the fine-grained 
GvdW(VHS-I) theory in the present calculations, actually does produce the 
most reliable picture of the interface and its surface tension. The present 
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results confirm in a very graphic manner the need for the fine-grained 
theory with its recognition of the nonlocality not only of the energetic but 
also the entropic effects. 

There are, of course, a number of other theoretical approaches to the 
problem of interface profiles and surface tension. An extensive review and 
discussion of alternative methods can be found in the recent text by 
Croxton. (8~ The precise relationship between the simple free energy density 
functional approach of the GvdW theory and the reference system pertur- 
bation theories or the attempts to extend the uniform fluid integral equa- 
tions for the radial distribution function to theories of nonuniform fluids is 
of very great interest. However, it is not our purpose to carry out a detailed 
comparison here. We merely wish to mention the methods of Toxvaerd, ~23) 
Evans, ~]~ Abraham/9) and in particular, Ebner et al. (24) as alternatives 
apparently able to produce accuracies similar to what we have achieved 
here. We believe our present theory offers considerable advantages in terms 
of physical and mathematical simplicity. Although the neglect of detailed 
correlation effects obviously causes some loss of accuracy this allows the 
GvdW theory to largely avoid the intricacies of pair correlation effects in 
nonuniform fluids which, as discussed by Croxton, (8) present considerable 
difficulties in the case of interface profile theory. As a result the GvdW 
theory is considerably easier to interpret and extend to allow for the 
particular features of, e.g., nonuniform fluids. It is also easier to numeri- 
cally implement. Even in the most sophisticated calculations reported here 
a profile and the corresponding surface tension can be generated at 
minimal cost (,~50 sec on a Cyber 72) using only straightforward subrou- 
tines. It might be mentioned in this connection that it was not really 
necessary to individually optimize the effective hard-sphere diameters at 
each grid point. We also tried a form 

d ( x )  = dg + (d, - d g ) / ( e  ~ + 1) (17) 

with a the same as in the density profile (dr and dg are the liquid and gas 
bulk values for d) and found that it gave the same surface tension to within 
a percent or so. 

4. C O N C L U S I O N  

We feel that the results of the present calculations can be regarded as 
very satisfactory from both a basic theoretical and a practical point of view. 
This work supports the conceptual development of the GvdW theory in 
that the accuracies of the several forms of the theory agree with expectation 
and for the best theory, allowing for a density- and temperature-dependent 
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effective hard-sphere diameter and nonlocal entropic effects, the errors are 
quite small (~5%). It is noteworthy that nonlocal entropic effects decrease 
the surface tension by between 5% and 10%. This effect is either not 
accounted for or not readily understood in earlier theories so far as we are 
aware. 

From a practical point of view this work is important because it clearly 
places accurate prediction of interface phenomena in simple fluids within 
reach of a wider range of chemists and physicists, most of whom are not 
specialists in statistical mechanics of nonuniform fluids nor in the imple- 
mentation of lengthy computer calculations. The GvdW theory offers not 
only ease of computation but also greater physical insight into the ingredi- 
ents of the theory. This, we believe--and previous and ongoing work 
supports this notion--will make it possible to extend the range of applica- 
tions to include systems and phenomena hitherto considered too compli- 
cated for accurate statistical mechanical methods. 

It must, of course, be noted that the present calculations leave several 
important aspects of simple fluid interfaces still to be considered. Apart 
from the detailed correlation effects that we have had to leave out to 
achieve the main simplification of the GvdW theory there are surface and 
bulk density fluctuations and quantum effects to be accounted for. It is for 
example, well known (25) that the behavior of the interface for temperatures 
very close to T c reflects long-range correlation effects not likely to be found 
in theories such as ours which focus on short-range interactions. There are 
also many-particle effects on the potential of interaction even in a simple 
fluid such as argon. These have been previously considered in this context 
by Lee et al. (26) Thus there is much scope for further development of our 
present calculations. 

Finally, we shall make an attempt to put our GvdW theory of 
interfaces as developed here in perspective. Its many deep-seated deviations 
from other current theories are important but perhaps not so readily 
appreciated. Let us first recall that the GvdW theory is a continuum theory 
conceptually related to, e.g., the famous Boltzmann equation of kinetic 
theory. It can be understood as a development of the theory described by 
van Kampen. (27) The major difference is that while van Kampen intro- 
duced a lattice of semimacroscopic cells the cell volume has in the GvdW 
theory decreased to the point where there is one and only one particle per 
cell. Thus we have, in principle, constructed a single occupation cell theory. 
The lattice is, however, not rigid but flexible so as to allow nonuniform 
structure to be resolved. Because only those configurations are accounted 
for which are consistent with the optimal cell structure the theory is based 
on a maximal contribution assumption and would, for example, neglect the 
communal entropy of the ideal fluid. Although this assumption introduces 



Generalized van der Waals Theory VIII 405 

some error it allows the free energy functional to be estimated on the basis 
of simple microscopic considerations. Long-range collective phenomena 
such as occur around the critical point can then be studied separately. 

The extreme simplicity of the free-energy functionals that are used in 
the GvdW theory is difficult to understand from the point of view of the 
currently dominant pair correlation approach to dense fluid theory. There 
is, however, as discussed by Lebowitz and Waisman (28) in a recent review 
of van der Waals theories of fluids, much evidence of the lack of sensitivity 
to short-range correlations. We would put the case as follows. The pair 
correlation function for Lennard-Jones fluids is dominated by hard-sphere 
packing effects. Their effects on the free energy, given that we use an 
appropriate definition for the hard-sphere diameter, is nearly PUrely en- 
tropic and can be estimated with good accuracy by simple excluded volume 
arguments. The attraction between particles is not greatly affected by 
correlation effects (beyond hard-sphere exclusion) for temperatures above 
the triple point. These are the characteristics of the problem which allow us 
to circumvent the full force of the pair correlation problem in the GvdW 
theory. They are also drawn upon in the construction of successful refer- 
ence fluid perturbation theories. (5'6) 

The most successful theories of gas/liquid interfaces previously devel- 
oped, so far as we know, are extensions of the reference fluid-perturbation 
theory to nonuniform fluids. Toxvaerd (23) started from the Barker- 
Henderson theory (5) and created a free-energy functional wherein the 
energy is nonlocal. He obtained predictions of very good accuracy. Subse- 
quently the derivations have become more sophisticated. (29'24'3~176 The 
modified van der Waals theory of Bongiorno and Davis (z9) differs little 
from Toxvaerd's method with respect to basic principle but the implemen- 
tation is based on the use of the Weeks-Chandler-Anderson perturbation 
theory. (31) The calculations by McCoy and Davis (32) show this theory to be 
capable of good accuracy. The theories of Ebner et al, (24) and Evans(I~ 
are based on approximations to the direct correlation function in the 
nonuniform fluid. They are capable of high accuracy. In all cases these 
theories construct free-energy functionals in terms of the average particle 
density and are therefore, to some degree, mean field theories. They 
introduce pair correlations obtained from the uniform fluid at some aver- 
age density. Thus they differ conceptually and computationally from the 
GvdW theory. The precise nature of these differences and their conse- 
quences for the predictions of the theories is a worthy topic of further 
research. In this context we also take note of the very recent work of Varea 
et al. (34) on the interface in a fluid mixture where the limit of infinite 
ranged attractions is studied, and the analysis of Percus (35) based on a 
one-dimensional analogy. 
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